Adaptive filter solution for processing lidar returns: optical parameter estimation.
نویسندگان
چکیده
Joint estimation of extinction and backscatter simulated profiles from elastic-backscatter lidar return signals is tackled by means of an extended Kalman filter (EKF). First, we introduced the issue from a theoretical point of view by using both an EKF formulation and an appropriate atmospheric stochastic model; second, it is tested through extensive simulation and under simplified conditions; and, finally, a first real application is discussed. An atmospheric model including both temporal and spatial correlation features is introduced to describe approximate fluctuation statistics in the sought-after atmospheric optical parameters and hence to include a priori information in the algorithm. Provided that reasonable models are given for the filter, inversion errors are shown to depend strongly on the atmospheric condition (i.e., the visibility) and the signal-to-noise ratio along the exploration path in spite of modeling errors in the assumed statistical properties of the atmospheric optical parameters. This is of advantage in the performance of the Kalman filter because they are often the point of most concern in identification problems. In light of the adaptive behavior of the filter and the inversion results, the EKF approach promises a successful alternative to present-day nonmemory algorithms based on exponential-curve fitting or differential equation formulations such as Klett's method.
منابع مشابه
Stator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کاملTarget Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 37 30 شماره
صفحات -
تاریخ انتشار 1998